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1 Introduction

This is a tutorial on Legofit, a package that uses genetic data to estimate the history of popula-
tion size, subdivision, and admixture [8, 9]. I’ve designed it for use in the AGAR Workshop on
Computational Evolutionary Genetics, which will meet online July 27–29, 2022. There is much
more in this document than we will use in the workshop. The extra material is there for those who
want to use Legofit on their own, after the workshop is over. For the workshop itself, you will need
sections 2, 6 (excluding 6.3.2), and 8. Further information about Legofit is available online.
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Try to install Legofit (sec. 2) on your own before the workshop starts. We’ll help with installation
problems during the workshop, but that will take less time if you’ve already made a start.

2 Installing Legofit

This section explains how to get Legofit running on your own computer.

2.1 Install git if necessary

You may have git already. To find out whether you do, type:

type git

On Mac or Linux, this will print the location of the executable git file. If there is no such file, you’ll
get an error message saying type: git: not found. I recommend using homebrew to install
packages on a Mac. To install git using homebrew, type:

brew install git

Otherwise, visit git’s website and look for the download instructions.

2.2 Clone legofit

Use git to clone Legofit onto your machine. This step will create a subdirectory called “legofit,”
which will contain the source code. Before executing the command below, use the cd command to
move into the directory where you keep source code that other people have written. I keep such
code in a directory called distrib, which I originally created by typing mkdir distrib. Having
created such a directory, move into it by typing

cd distrib

Then clone legofit by typing:

git clone https://github.com/alanrogers/legofit.git legofit

This will create a directory called legofit. Use cd to move into it.

2.3 Install a C compiler if necessary

To see whether you have a C compiler already, type type cc, or type gcc, or type clang. You
should get output like

cc is /usr/bin/cc

If you need to install a C compiler, there are several alternatives. On a Mac, you can install Xcode
from the App Store. Or you can use Homebrew to install clang or gcc:

brew install clang

or

brew install gcc

On Linux, the command would be

sudo apt-get install clang

or

sudo apt-get install gcc
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2.4 Install “make” if necessary

You will also need the program “make,” so type “type make.” If you need to install, then

brew install make

2.5 Set up a “bin” directory to hold executable files.

On Unix-like operating systems (MacOS and Linux) it is conventional for each user to maintain
a directory named “bin,” just below the home directory, which contains executable files. This
directory must also be added to the system’s PATH variable, which is used for finding executable
files.

First create a “bin” directory, if you don’t already have one. To do so, first type the command

cd

at the shell prompt. This moves you into your home directory. Then type

mkdir bin

This creates a new directory called “bin.”
You now need to add this to your shell’s PATH variable. I’ll assume you’re using the bash shell.

In your home directory, look for a file called either “.bash_profile” or “.profile”. Because
the name begins with “.”, it will not show up if you type ls. However, it will appear if you type
ls .bash_profile or ls .profile. If only one of these files exists, open it with a text editor (not
a word processor). If they both exist, edit “.bash_profile”. If neither exists, use the editor to
create a new file called “.bash_profile”.

Within this file, you may find existing definitions of the PATH variable. Add the following after
the last line that changes this variable:

export PATH=$HOME/bin:$PATH

Save this change and exit the editor.
The contents of this file are executed by the shell each time you log into your computer. Since

you have just created the file, your PATH has not yet been reset. Log out and then log back in
again, and your PATH should be set. To check it, type

echo $PATH

This will print your PATH.

2.6 Compile and install legofit

The details are in the Legofit documentation.

3 Setting up your environment at the CHPC

This section isn’t needed for the AGAR workshop, because we aren’t using the CHPC.
Utah’s CHPC has several “clusters,” each with many “nodes.” Each node is a powerful computer

in its own right. The slurm version of the pipeline submits legofit jobs to multiple nodes so that
they can run in parallel. Within each node, legofit parallelizes across all available cores. This
greatly reduces the time required for an analysis.

To log into a CHPC cluster, your own computer must support ssh. To find out whether it does,
type the command
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type ssh

at the bash prompt. If ssh is on your system, the response will be something like

ssh is /usr/bin/ssh

If ssh is not on your system, the response will be

-bash: type: ssh: not found

In the latter case, install openssh by typing

brew install openssh

Now that you have access to ssh, you can log into one of the CHPC clusters by typing the
following at the bash prompt. Either

ssh -l <your unid> notchpeak.chpc.utah.edu

or

ssh -l <your unid> kingspeak.chpc.utah.edu

or

ssh -l <your unid> lonepeak.chpc.utah.edu

Here, <your unid> is your own University of Utah id. Each of these commands will log you onto
one of the clusters at Utah’s CHPC.

In the sections that follow, I will introduce you to several directories and files on the CHPC
servers. Each one is described by its “path name” relative to your own “home directory,” which is
represented by the symbol ~. (In scripts, this directory is often called $HOME.) Before these path
names will work, you’ll need to define two “soft links” within your own home directory, which point
to group storage devices owned by the Rogers lab. After you define these soft links, ~/grp1 will
refer to one of these group storage devices and ~/grp2 to the other. You can establish these links
by typing

ln -s /uufs/chpc.utah.edu/common/home/rogersa-group1 ~/grp1

ln -s /uufs/chpc.utah.edu/common/home/rogersa-group2 ~/grp2

If everyone defines these soft links in the same way, then we can all use path names of the form
~/grp1/rogers/data/whatever.

The Legofit executables are already available in directory ~/grp1/bin. To make these easily
available, use a text editor to edit the file .bash_profile in your home directory. Within that file,
you will find a line that defines a variable called PATH, which is used by bash to find executable
programs. We want to add ~/grp1/bin to the end of PATH, so that bash can find the Legofit
executables. Edit that line that defines PATH so that it looks like this

export PATH=$PATH:$HOME/bin:$HOME/.local/bin:$HOME/grp1/bin

Also add the following line at the end of the file

module --latest load git
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This last line will give you access to the program “git,” which you’ll need to access the agar22
repository. After making these changes, save the file and exit the editor. The file .bash_profile

is normally read only once, when you first log in. Because you’ve only just edited this file, bash
doesn’t yet know about the changes you made there. To fix this, you can either type logout and
then ssh back in again, or type . .bash_profile, which tells bash to execute the commands in
this file.

Finally, clone the agar22 repository into your own home directory on the CHPC.

git clone https://github.com/alanrogers/agar22.git agar22

This will create a subdirectory called “agar22,” which contains files related to the workshop.

4 Making an input file in .raf format

Legofit uses data in “.raf” format. The following data sets are already available on the server at
Utah’s CHPC.

Altai Neanderthal ~/grp1/rogers/data/altai/orig2/altai.raf.gz

Vindija Neanderthal ~/grp1/rogers/data/vindija/orig/vindija.raf.gz

Western Europeans (SGDP) ~/grp1/rogers/data/simons/raf/weur.raf.gz

If you’d like to make a data set for another modern human population, copy the following slurm
script into a directory of your own:

~/grp1/rogers/data/simons/raf/weur.slr

Change its name (because “weur” stands for “western European”) and edit it to reflect the popu-
lation or populations that you want to study. You’ll find lots of options under

~/grp1/rogers/data/simons/

Near the top of this script, you’ll find the lines

#SBATCH --account=rogersa-np

#SBATCH --partition=rogersa-np

These specify the account and partition under which the job will run. The choice “rogersa-np”
refers to my (single) node on the notchpeak cluster. To run the job there, log into the notchpeak
cluster, use “cd” to move to the directory that contains the script and then type

sbatch <your script name>

where <your script name> is the name of your version of the script.
If the notchpeak node is busy, try kingspeak. To do so, log into kingspeak and specify

--account=rogersa-kp and --partition=rogersa-kp. To do this, it isn’t necessary to edit the
file. You can override the values in the file by specifying these options on the command line, like
this:

sbatch -A rogersa-kp -p rogersa-kp <your script name>

If you’re a member of my lab, you can also run under my allocation. To do this on notchpeak, log
into that cluster and use
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sbatch -A rogersa -p notchpeak <your script name>

On kingspeak, the command is

sbatch -A rogersa -p kingspeak <your script name>

The lonepeak cluster is available to users who have no allocation. To use it, log into lonepeak and
type

sbatch -A rogersa -p lonepeak <your script name>

However you run your script, it will take hours to complete. You can check on its status at any
time by typing

squeue -u <your user id>

where <your user id> is the id you use to log onto the CHPC cluster. As a shorthand, I often
type this as

squeue -u ‘whoami‘

which uses Linux’s “whoami” command to fill in your user id. (Note: the ticks in this command
are “back ticks.”)

5 Tabulating site patterns

Legofit works with the frequencies of “nucleotide site patterns,” which are explained in this section
of the Legofit website. During the workshop, you will not need to tabulate site patterns, because
I’ll do that for you before the workshop begins. This section is here to help you do the job on your
own, after the workshop.

The Legofit package includes several programs for tabulating site patterns. I’ll focus here on
“sitepat,” which works with data files rather than with the output of a simulation program. Sitepat
reads a series of files in .raf format and writes a file describing the frequency of each site pattern.
Optionally, it also writes a series of output files, each describing site pattern frequencies in a different
bootstrap replicate. These replicates are used for measuring statistical uncertainty. Details are in
the Legofit docs. Sitepat reads enormous data files and can take hours to run, even on a compute
cluster. That is why we aren’t doing this step during the workshop.

Have a look at file data.opf. After the header, the first few lines look like

# SitePat E[count] loBnd hiBnd

x 312922.8110121 311974.2398439 313732.1909228

y 306301.1413693 305178.5610866 307121.6833708

v 102039.5699405 101293.0904018 102887.7097098

a 78653.9538690 77779.2808408 79467.4795387

d 339489.6889881 337728.6566221 341531.9807664

x:y 189532.2514885 187871.4715776 191321.2242190

The left column lists the site patterns. “E[count]” is (more or less) the number of sites exhibit-
ing each site pattern. (For a full explanation, see the Legofit docs.) The values under “loBnd”
and “hiBnd” enclose a 95% confidence interval. The frequency of site pattern “x” is its value of
“E[count]” divided by the sum of all the values under “E[count].”

It’s best to run sitepat within a script, both because it takes awhile to run, and also because
the script will document what you did. Here is the slurm script that generated the output above.
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Figure 1: Model of history described in file “a/a.lgo.” Squares represent segments from which we
have data. Solid arrows indicate ancestor-descendant relationships, and dashed arrows represent
gene flow. Vertical axis is not to scale.

6 Fitting models of history

6.1 Organizing the data directory

For each set of site pattern data, I create a directory tree with the same format, which is illustrated
in the github repository at legofit/europe. Within this directory, you’ll find (1) a README.md
file, which describes all the others, (2) a file called “data.opf,” which contains observed site pattern
frequencies, (3) sitepat.slr, a slurm script that runs “sitepat” and generates “data.opf,” and “boot,”
a directory containing bootstrap replicates. There will eventually be other files with names like
“all.bootci” and “all.bma,” which contain the results of analyses. Within this directory, you will
also find subdirectories with names like “a,” “ab,” and so on. Each of these refers to a different
model of history, which we wish to fit to the data in “data.opf.” Name these as you wish, but it’s a
good idea to keep the names short. In my naming scheme, directory “a” contains a model in which
there is only one episode of admixture, labeled α; “ab” is for a model that has episodes α and β;
and so on.

6.2 Preliminary exercises with legosim and legofit

Within the subdirectory for each model, assumptions about population history are described in file
“a.lgo.” These assumptions are described using syntax that you can read about here. Use cd to
move into directory “a,” and have a look at a.lgo, which describes the model illustrated in Fig. 1

We can use this file to calculate the expected frequency of each site patter. Type:

legosim a.lgo

This runs the program “legosim,” which reads file a.lgo, estimates the probability of each site
pattern, and prints out the result. By default, legosim doesn’t calculate probabilities for singleton
site patterns (those in which the derived allele is present only once), and it uses a stochastic
algorithm to estimate probabilities. To include singleton site patterns and use the (faster and more
accurate) deterministic algorithm, the command would be
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legosim -1 -d 0 a.lgo

Because it is fast, legosim is a useful way to check for errors in your .lgo file. For further details
about the program and its command-line arguments, see its documentation.

Having ascertained that the sotware can read “a.lgo” without errors, let’s use the “legofit”
program to estimate parameters. The parameters to be estimated are those defined as “free” in file
“a.lgo.” Type the following at the bash command line:

legofit -1 -d 0 --tol 1e-3 a.lgo ../data.opf

After a few seconds, legofit should print a page of output. But before examining that, let’s unpack
the command that generated it. The 1st argument on the command line is “-1.” This tells legofit
to use singleton site patterns—those in which the derived allele is present only once. Next, the
arguments “-d 0” tells legofit to use its deterministic algorithm, which is faster and more accurate
than the stochastic one it uses by default. (The stochastic algorithm is needed for complex models.)
The arguments “--tol 1e-3” tell legofit to be satisfied with a fairly loose fit between model and
data. In research, you would want a smaller number here. The next argument, a.lgo, is the file
describing the model of history, and the final argument, ../data.opf, is the data file.

Now lets examine the output of that last command. The first section of output echoes the the
legofit command and the input parameters, along with default values of parameters that we didn’t
set on the command line.

########################################

# legofit: estimate population history #

# version 2.3.8-12-gf1f00c9 #

########################################

#

# Program was compiled: Jun 21 2022 11:28:40

# Program was run: Thu Jul 7 20:38:55 2022

#

# cmd: legofit -1 -d 0 --tol 1e-3 a.lgo ../data.opf

# curr dir: /Users/rogers/txt/agar22/legofit/europe/a

# Stage nOptItr nSimReps

# 0 1000 1

# algorithm : deterministic

# ignoring probs <= : 0

# Branch length floor: 0

# DE strategy : 2

# F : 0.3

# CR : 0.8

# tolerance : 0.001

# nthreads : 2

# lgo input file : a.lgo

# site pat input file: ../data.opf

# free parameters : 12

# points in DE swarm : 120

# Including singleton site patterns.

# cost function : KL

In the output above, “tolerance” is the value we specified as --tol 1e-3 on the command line.
The next section prints the initial values of all parameters, as read from the .lgo file.
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Initial parameter values

Fixed:

zero = 0

one = 1

TmN = 1

Txynd = 25920

Free:

Tnd = 24000

Tav = 14000

Txy = 10000

Td = 2500

Ta = 4000

Tv = 1000

twoNav = 2000

twoNn = 2000

twoNnd = 2000

twoNxy = 20000

twoNxynd = 20000

mN = 0.01

Then comes a line that tells us the result of the optimization procedure.

DiffEv reached_goal. cost=7.22802e-04 spread=8.77863e-04

To understand this line, you need to know how legofit fits parameters to data. It uses something
called “KL divergence” [5] to measure the difference between observed site pattern frequencies and
those predicted by the model of history. Legofit searches for parameter values that minimize KL
divergence, which is called “cost” in the output above. The value printed there (7.22802e-04) is
the lowest KL divergence legofit was able to find. This search is conducted by an algorithm called
“differential evolution” (DE) [7]. DE maintains a swarm of points, each representing a guess about
parameter values. In each iteration of the algorithm, the best points (those with lowest KL) mutate,
recombine, and reproduce to produce a new generation of points. The algorithm stops when the
difference between the best point and the worst (called “spread” in the output above) falls to a
specified tolerance. As you can see in this output, spread is smaller than 0.001, the tolerance we
specified using “--tol 1e-3” on the command line. Thus, the algorithm has reached its goal, and
this is why it printed DiffEv reached_goal in the output above. This goal is arbitrary, and the
output can be useful even when the goal is not reached.

The next section of output lists the fitted values of all parameters.

Fitted parameter values

Free:

Tnd = 24871.7

Tav = 16727.1

Txy = 13090.4

Td = 1494.04

Ta = 5346.73

Tv = 2660.19

twoNav = 14309.4

twoNn = 8788.21
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twoNnd = 2998.19

twoNxy = 23935.7

twoNxynd = 46699.2

mN = 0.0198353

Finally, legofit prints the expected branch length associated with each site pattern in the fitted
model.

# SitePat BranchLen

x 38204.0073508

y 37200.1770458

v 12628.3146863

a 10003.0899715

d 41976.1547361

x:y 22591.0958761

x:v 274.3861485

x:a 278.8300856

x:d 3121.4558596

y:v 383.1800171

y:a 321.8630482

y:d 2936.3292837

v:a 28571.5881777

v:d 1060.8437350

a:d 1067.6185093

x:y:v 576.2188433

x:y:a 571.7749063

x:y:d 7001.3957667

x:v:a 2884.5519560

x:v:d 225.8439349

x:a:d 230.2878720

y:v:a 3460.0030731

y:v:d 235.9020933

y:a:d 229.1273190

v:a:d 17599.3335385

x:y:v:a 7238.2996703

x:y:v:d 624.7610570

x:y:a:d 620.3171199

x:v:a:d 5567.0327885

y:v:a:d 6019.8141157

For example, the expected branch length of site pattern x is 38204.0073508 generations. This is
the average length, within the gene genealogy, of the branch that, should a mutation strike it,
would generate site pattern x. Under the model of infinite sites [4], the expected frequency of a
site pattern among polymorphic sites is proportional to its expected length and can be calculated
as the ratio of this length to the sum of all the lengths.

6.3 A legofit pipeline

A minimal legofit analysis would consist of just one run of the program, such as the one we did
above. This provides a point estimate of each parameter but does not estimate the uncertainties of
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those estimates. To estimate uncertainties, you also need to run legofit on each bootstrap estimate.
Having done all that, you have completed what I like to call “stage 1” of a complete analysis.

This first stage is all one really needs to do. I usually do several additional stages (described
below), which do seem to improve precision. They are time consuming, however. If one is fitting
numerous models of high complexity, I advise fitting all models with only the first stage of analysis.
Then choose a few of the best models for detailed study, using the full pipeline.

The second stage of analysis is designed to guard against a problem that often arises when one
tries to find the minimum of a complex function. The cost function may have many local minima
(low spots), some of which are deeper than others. We are looking for the “global minimum,” which
is the deepest of these local minima. The DE algorithm is pretty good at finding global minima,
but it isn’t perfect. It’s possible that the legofit runs from stage 1 ended up at several local minima.
Stage 2 is designed to choose among these local minima.

To make this possible, each job in stage 1 uses the --stateOut option, which tells legofit to
write a file summarizing the final state of the DE swarm. Then, each job in stage 2 uses the
--stateIn option, which tells legofit to initialize its swarm of DE points by reading all the state
files produced by stage 1. Thus, each legofit job in stage 2 begins with a DE swarm that includes
points from all the legofit jobs of stage 1. If the initial swarm includes points from several local
minima, then legofit can choose among these to find the global minimum.

In addition to multiple local minima, legofit also faces another problem: a small increase in
the value of one parameter may have nearly the same effect as a small decrease in another. This
problem can be seen in Fig. 2, where some parameter estimates are tightly correlated with others.
These correlations make it hard for the optimizer to zero in on optimal parameter values.

To ameliorate this problem, I use Legofit’s “pclgo” program. It uses principal components
analysis to reexpress all free parameters as functions of a set of uncorrelated “principal components.”
Optionally, you can tell pclgo to ignore principal components that account only for a tiny fraction
of the variance. This step rewrites a.lgo to produce a new file called “b.lgo.” In this new file, all
free variables are principal components, and all the real variables are functions of the principal
components. The third and fourth stages of analysis are just like the first and second, except that
they use b.lgo instead of a.lgo.

There are several ways to organize this four-stage analysis into a pipeline. On the CHPC cluster,
I use slurm scripts, which are discussed below. First, however, I introduce a version of the pipeline
written entirely in bash.

6.3.1 Bash version of pipeline

Within the agar22 directory tree, cd into directory legofit/europe/a. You’ll find several bash
scripts there, whose names all end with .sh. All but one of these scripts is involved in the bash
version of the pipeline. The bash pipeline is a scaled-down version of the one described below in
section 6.3.2. In this smaller version, legofit fits only 10 of the bootstrap replicates, rather than all
50, and each run of legofit is allowed to do only 100 iterations of the optimization algorithm, rather
than 5000. Because we are using so few replicates, it isn’t possible to do a principal components
analysis, so the bash pipeline does only the first two stages of analysis.

The bash pipeline consists of the following files:

a.lgo defines model of history
a1.sh stage 1 of analysis on real data
a1boot.sh stage 1 on a bootstrap replicate
a2.sh stage 2 on real data
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Figure 2: Scatter plot of each parameter against each other, based on 50 simulated data sets. After
Rogers [9, Fig. 3].
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a2boot.sh stage 2 on a bootstrap replicate
bash_pipeline.sh runs all the other scripts

To run the first stage of analysis on the real data, enter the following command:

bash a1.sh

That command takes 2.7 seconds on my 2018 Macbook Air. After it runs, there should be three
new files in your directory:

a1.legofit main output from legofit
a1.err error output from legofit
a1.state state of DE swarm at end of legofit run

To run the first stage on the first 10 bootstrap replicates, type:

seq 0 9 | xargs -n 1 bash a1boot.sh

In real research, you’d want to use all 50 bootstrap replicates. The abbreviated command above
will run 10 jobs, each of which might have been launched by typing on the command line something
like

bash a1boot.sh <i>

where <i> is 0 for the first job, 1 for the second, and so on up to 9. Each job will analyze a single
bootstrap replicate and will write three files that are analogous to the three discussed above. It
takes a minute or two to do all 10 bootstrap replicates.

We could, if we wished, proceed in this fashion and execute the remaining stages of anal-
ysis by typing bash commands at the terminal. But there is an easier way. Examine the file
bash_pipeline.sh by typing

less bash_pipeline.sh

After a few lines at the top, which establish rules for dealing with errors, you will find

# Stage 1 of analysis.

bash a1.sh

seq 0 9 | xargs -n 1 bash a1boot.sh

These lines are identical to the commands we used above to execute the first stage of analysis. To
do the entire analysis, type

bash bash_pipeline.sh

You should end up with 22 .legofit files (11 for each stage), the same number of .err files, and half
that many .state files. Before talking about what to do with these files, let us consider other ways
to implement a pipeline.

This implementation, using bash, has the advantages of simplicity and low overhead. It’s
probably the easiest version to get working on your laptop. However, there are better ways to
implement a pipeline. One problem the current approach is that when something goes wrong half
way through the analysis, it’s hard to start the process up again in the middle. Another is that we
are doing only one legofit run at a time. It would be better to do many runs in parallel.

In the bash pipeline, we used the xargs command. This has a “-P” argument, which makes it
possible to run multiple jobs in parallel. This would not be useful in the current pipeline, however,
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because legofit is multithreaded and each run uses all the cores available on your computer. To
run multiple legofit jobs in parallel, you need to run each one on a different node within a high-
performance computing cluster. This is the rationale for the slurm version of the pipeline.

We won’t be using slurm in the AGAR workshop. So if you’re in the workshop, skip ahead to
section 8.

6.3.2 Slurm version of pipeline

Use ssh as described above to log into one of the CHPC clusters, and then cd into directory
agar22/legofit/europe/a. You’ll find several slurm scripts there, whose names all end with
.slr. There is also a shell script called “pipeline.sh,” which runs the entire pipeline. The pipeline
comprises the following files:

a.lgo defines model of history
a1.slr stage 1 of analysis on real data
a1boot.slr stage 1 on a bootstrap replicate
a2.slr stage 2 on real data
a2boot.slr stage 2 on a bootstrap replicate
pclgo.slr run pclgo to create b.lgo
b1.slr stage 3 of analysis on real data
b1boot.slr stage 3 on a bootstrap replicate
b2.slr stage 4 on real data
b2boot.slr stage 4 on a bootstrap replicate
pipeline.sh runs all the slurm scripts

To run the first stage of analysis on the real data, enter the following command

sbatch -A rogersa -p <your cluster> a1.slr

where <your cluster> is “notchpeak,” “kingspeak,” or “lonepeak,” depending on which cluster
you logged into. This queues your job for execution but does not necessarily run it immediately. If
the system is busy, it may not run for hours. To check on the status of this job, type

squeue -u <your unid>

The output will summarize the status of all jobs you’ve submitted to slurm.
To run the first stage of analysis on all bootstrap replicates, the command is

sbatch -A rogersa -p <your cluster> --array=0-49 a1boot.slr

To launch the entire pipeline, first use a text editor (e.g., vim or emacs) to edit the file
pipeline.sh. Near the top of that file, you’ll find the lines

export SBATCH_ACCOUNT=rogersa

export SBATCH_PARTITION=notchpeak

Edit these lines to reflect the account and partition you are using, then save the file and exit the
editor. Finally, type

. pipeline.sh

This will queue the entire pipeline for execution.
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7 Model selection, model averaging, and confidence intervals

As discussed above, legofit uses KL divergence to measure the difference between observed and
expected site pattern frequences, and it labels this value “cost” in its output. One might therefore
assume that the best model would be the one with the lowest value of cost. This is not necessarily
so, because of the problem of overfitting. Very complex models fit not only the signal in the data,
but also the noise, and the noise in one data set does not predict that in another. Consequently,
the best-fitting model may not be the most predictive.

To address this problem, Legofit uses the “bootstrap estimate of predictive error” (bepe) [8, 2,
3]. This method uses variation among data sets (the real data plus 50 replicates generated by a
moving-blocks bootstrap [6]) to approximate variation in repeated sampling. It fits the model to
one data set and then tests this fit against all the others. Let us apply Legofit’s “bepe” program to
the output from the last stage of analysis. Use cd to move into the directory with all your .legofit
output files, and type

bepe ../data.opf ../boot/boot*.opf -L b2.legofit b2boot*.legofit > b2.bepe

On the bepe command line, we first list all the input .opf files, beginning with the real data. Then,
after -L we list the corresponding .legofit output files in the same order. The first few lines of
output look like this

################################################

# bepe: bootstrap estimate of predictive error #

# version 2.3.8-12-gf1f00c9 #

################################################

#

# Program was compiled: Mar 22 2022 17:40:38

# Program was run: Sat Jul 9 13:41:24 2022

# curr dir: /Users/rogers/txt/agar22/legofit/europe/a

#

# bepe DataFile LegofitFile

1.130271806e-06 data.opf b2.legofit

1.089578158e-06 boot0.opf b2boot0.legofit

The first number in the left column is the bepe value of the real data. This is the number to use
in choosing among models. The numbers below this one refer to bootstrap replicates and are use
by booma, to which we now turn.

If one model has a bepe value much lower than the others, then it’s a pretty obvious winner.
But what if the best bepe is only slightly lower than the second best? When several models provide
reasonable descriptions of the data, it is better to average across models than to choose just one.
This allows uncertainty about the model itself to be incorporated into confidence intervals. For
this purpose, Legofit uses bootstrap model averaging, “booma” [1, 8]. The booma weight of the
ith model is the fraction of data sets (including the real data and 50 bootstrap replicates) in which
that model “wins,” i.e. has the lowest value of bepe.

In the agar22 repository, there are several subdirectories just below legofit/europe, each of
which contains the analysis of a single model. Each of these contains a file named b2.bepe, which
was calculated as described above. Each directory also contains a file named b2.flat, which was
calculated like this:

flatfile.py b2.legofit b2boot*.legofit > b2.flat
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From the legofit/europe directory, type

booma */b2.bepe -F */b2.flat > all.bma

This will create a file called “all.bma” that gives the booma weight of each model and also the
model-averaged parameter estimates. The first few lines look like this

##################################

# booma: bootstrap model average #

# version 2.3.9-7-g8bbcef2 #

##################################

#

# Program was compiled: Jul 9 2022 14:41:56

# Program was run: Sat Jul 9 14:50:30 2022

# cmd: booma a/b2.bepe ab/b2.bepe abc/b2.bepe abcd/b2.bepe abd/b2.bepe ac/b2.be>

# curr dir: /Users/rogers/txt/agar22/legofit/europe

# Weight MSC_file Flat_file

# 0 a/b2.bepe a/b2.flat

# 0 ab/b2.bepe ab/b2.flat

# 0 abc/b2.bepe abc/b2.flat

# 0.9803921569 abcd/b2.bepe abcd/b2.flat

# 0.01960784314 abd/b2.bepe abd/b2.flat

# 0 ac/b2.bepe ac/b2.flat

# 0 acd/b2.bepe acd/b2.flat

# 0 ad/b2.bepe ad/b2.flat

Only two of the models (abc and abcd) have non-zero weights. These weights are used in calculating
the model-averaged parameter estimates, which are listed below the weights.

To calculate the bootstrap confidence interval of each parameter, type

bootci.py all.bma > all.bootci

These confidence intervals are slightly wider than they would be, had we based them on results from
a single model, rather than on an average across models. This is because they include uncertainty
about the model itself in addition to uncertainty about parameter values under a given model.

8 Graphing results

There are several R scripts in the legofit section of the agar22 repository. Two of them are in
legofit/europe:

patfrq.r plots site pattern frequencies as in Rogers [10, Fig. 3]
bmadot.r plots confidence intervals as Rogers [9, Fig. 7]

You can experiment with those on your own. During the workshop, we’ll be working with the three
R scripts in legofit/europe/a:

a2pairs.r makes a pairwise scatterplot like Fig. 2
resid.r plots residual error as in Fig. 5 of [9]
dotplot.r plots confidence intervals as in Fig. 7 of [9]
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To use these, first make sure that R is installed on your system.
The next step is to summarize legofit’s output files, so that R can read them. Type

flatfile.py a2.legofit a2boot*.legofit > a2.flat

This creates “a2.flat,” a file with a row for each data set (the real data and 10 bootstrap replicates)
and a column for each free variable. To examine it, type less -S a2.flat. The final summary
file is created like this:

bootci.py a2.flat > a2.bootci

This creates “a2.bootci,” which gives the bootstrap confidence interval of each parameter.
To make a pairwise scatterplot, type

Rscript a2pairs.r

This creates a file called “a2pairs.pdf,” which you can examine with any pdf viewer. It makes a
scatter plot of each parameter against each other parameter. One of the plotted circles in each
panel is the real data and the rest are bootstrap replicates. You will probably find that some
parameters are tightly correlated with others, as in Fig. 2.

To plot the residuals, type

Rscript resid.r

This will make “a-a2-resid.pdf,” which will show you the residual errors, i.e. the difference between
the observed site pattern frequencies and those predicted by the model. The red asterisks are the
real data, and the blue circles are bootstrap replicates. The blue scatters measure the uncertainty
in the estimate, and ideally these scatters would all overlap zero. But you’ll probably find that this
isn’t so. You’ve fit a very simple model, and the lack of fit is a clue that something is missing from
the model.

To plot the confidence interval of each parameter, type

Rscript dotplot.r

This will create “a-det-dot.pdf.” In this graph, the open circles are point estimates, and the
horizontal lines are 95% bootstrap confidence intervals. Don’t worry if some of your point estimates
are outside of the confidence intervals. This can happen when confidence intervals are generated
by bootstrap. Look at the confidence intervals of the parameters that are tightly correlated with
other parameters in a2pairs.pdf. You’ll probably find that these parameters have wide confidence
intervals. This is because tight correlations make it hard to get precise estimates, and this results
in broad confidence intervals.

9 Conclusions

If you followed all the steps above, you should have all the tools you need to do a complete legofit
analysis on your own computer. It is feasible to fit models of moderate complexity on a laptop.
More complex models demand faster computers with multiple cores. Highly complex models are
best studied on a high-performance computing cluster. The instructions above are specific to the
CHPC at my own institution. You may need to modify them if you use a different center for
high-performance computing.
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